CRN - DOE MICROTURBINE DEMONSTRATION PROGRAM

Cooperative Research Networkof the National Rural Electric Cooperative Association

Peer Review of Microturbine Programs Fairfax, VA March 13, 2002 Ed Torrero, CRN Arlington, VA

Rural Co-operatives . . .

- 10% of power supply, 30 GW
- 45% of distribution lines, 75% of land mass
- 13+ million service connections, 34 million customers
- 60% residential, 35% commercial/industrial load

DoE Microturbine Demo Program Objectives . . .

- Collect test and operation information on installation and performance by NRECA participants
- Identify developmental needs re: permitting, interconnection and building code compliance
- Identify developmental needs re: technology, maintenance and operation
- Provide technology baseline to benchmark future improvements

Co-op Participants . . .

Demonstration Features...

- Sound cross section of manufacturers
 - 5 Capstones
 - 2 Elliotts
 - 1 Honeywell
 - 1 Ingersoll-Rand
- Multiple fuels
 - Low pressure natural gas
 - Fuel Oil
 - Propane
- Thermal recovery
- Grid-Independent and Grid-Parallel operation
- Baseload and simulation of remote grid dispatch
- Simulation of SCADA integration

Program Characteristics...

- Multiple units at diverse sites operated by "real" co-op users
- Significant leveraging of funds
 - EPRI / CRN
 - CRN
 - CO-OPS
 - DoE
- Key CRN crosscheck access to parallel EPRI MT demonstration program

Gas Fired Capstone at Chugach Site . . .

- Wooden enclosure halved troublesome tone noise to nearby residences
- Capstone now has a a silencer retrofit kit for inside the microturbine cabinet

Oil fired Capstone awaiting installation

Photo courtesy of Chugach Electric Association Anchorage, AK

Typical Co-op Reporting (Chugach) . . .

Interconnect

- 130 feet; 480 to 208 3-Ph via transformer
- 170 feet to new 15 psig NG, New oil tank

Costs: Demo and Com'l

	Natural Gas	Fuel Oil			
Actual Demonstration:					
Engineering	\$4,670	\$10,200			
Permitting	3,300	560			
Fuel	2,950	11,230			
Electrical	9,500	9,500			
Thermal Recovery	y NA	NA			
Total	\$20,420	\$31,490			

Projected if Full Commercial unit at customer site: \$8.250 \$18.120

Site Installation Letter Report and Cost Spreadsheets

Typical Co-op Reporting (Chugach) . . .

Reduced availabilities due to replacements of Rotary Fuel Compressor, etc. New air bearing design should enhance availability.

Gas Fired Capstone at Cass County Site . .

CRN Demo Unit installed at Cass County

- Located at Holiday Inn in North Dakota
- Natural Gas at 11 psig -Runs Grid Independent
- Electric output powers an electric water heater!
 - Thermal recovery is for additional water heating

Typical Co-op Reporting (Cass County) . . .

Reduced availabilities due to replacements of Rotary Fuel Compressor, etc.

Technology Bottom Line...

- No endemic technology failures to date (microturbine power assembly, recuperator, etc).
- Efficiencies about as represented.
- Capstone perhaps most "commercial" but all manufacturers beset by peripheral issues.
- Areas where design enhancements needed:
 - Fuel gas compressor likely to remain a high-maintenance item and energy consumer (~5 to 7% of kWh)
 - Limited motor start capability constrains Grid Independent use
 - Inverters may need more "hardening" relative to grid

Typical Equipment and Installation Costs . . .

Doubling the Size: Reduces Equipment Cost per kW by 20%

Reduces Installation Cost Component per kW by 35%

How Does Cost Stackup?

Cost to Customer (Cents / kWh)

	Rural Co-op	IOU Electric	Customer Owned
Peaking @ 1,500 Hours per y	year		
Owning Cost	14.3	20.3	24.6 to 34.2
\$6 /MilBtu NatGas* + 1.5¢ Maint	8.6	8.6	8.6
Total	22.9	28.9	33.2 to 42.8
BaseLoad @ 95% avail = 8,32	2 Hours per ye	ar	
Owning Cost	2.6	3.7	4.4 to 6.2
\$6 /MilBtu NatGas* + 1.5¢ Maint	8.6	8.6	8.6
Total	11.2	12.3	13.0 to 14.8

^{* \$1.20 /} gallon Fuel Oil is equivalent to \$8.65 per million Btu Natural Gas ...and... \$1.10 per gallon Propane is equivalent to \$12 per million Btu Natural Gas

Basis: Excludes cogeneration credit which at full thermal recovery could reduce busbar costs 2.5 ¢/kWh for gas price of \$6.00 per MilBtu.

\$1,100 / kW equipment plus \$275 / kW installation 10-Year equipment life

14,200 HHV Btu / kWh heat rate Maintenance at 1.5 cents per kWhr

Debt is at 9% were applicable **Utility ROE is 18%**

Customer Owned ROE is 25% → 3.3 YrPayback Range is w w/o debt financing No Investment Tax Credit 7-Year MACRS for FIT where applicable

Combined FIT + StateIncomeTax rate is 41.5%

Thermal Recovery Attractiveness?

- Thermal recovery Installation Cost can quickly spiral if every last Btu chased.

Basis: \$25,000 cost to install 330,000 Btu/Hour Thermal Recovery at a 60 kW microturbine site
Customer owns thermal recovery equipment and requires a 3.3 year payback
Displaced thermal use was fueled by \$6 natural gas at a 75 percent combustion efficiency

